Skip to main content
Log in

Signatures of shear thinning-thickening transition in steady shear flows of dense non-Brownian yield stress systems

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Steady shear flows of dense athermal systems composed of soft disks are investigated via non-equilibrium molecular dynamics simulations, from which we sort out links among the structure, dynamics, and shear rheology. The systems at rest are jammed packings of frictionless disks with a nonzero yield stress. Driven by low shear rates, the flows shear thin due to the presence of the nonzero yield stress, but transit to shear thickening above a crossover shear rate \(\dot \gamma _c \). At \(\dot \gamma _c \), we observe the strongest structural anisotropy in the pair distribution function, which serves as the structural signature of the shear thinning-thickening transition. We also observe dynamical signatures associated with the transition: At \(\dot \gamma _c \), scaling behaviors of both the mean squared displacement and relaxation time undergo apparent changes. By performing a simple energy analysis, we reveal an underlying condition for the shear thickening to occur: \(d(\ln T_g )/d(\ln \dot \gamma ) > 2\) with T g the kinetic temperature. This condition is confirmed by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vermant J, Solomon MJ. Flow-induced structure in colloidal suspensions. J Phys D-Condens Mat, 2005, 17: R187–R216

    Article  CAS  Google Scholar 

  2. Wagner NJ, Brady JF. Shear thickening in colloidal dispersions. Phys Today, 2009, 62: 27–32

    Article  CAS  Google Scholar 

  3. Cheng X, McCoy JH, Israelachvili JN, Cohen I. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science, 2011, 333: 1276–1279

    Article  CAS  Google Scholar 

  4. Brown E, Jaeger HM. Through thick and thin. Science, 2011, 333: 1230–1231

    Article  CAS  Google Scholar 

  5. Brown E, Jaeger HM. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep Prog Phys, 2014, 77: 046602

    Article  Google Scholar 

  6. Lee YS, Wetzel ED, Wagner NJ. The ballistic impact characteristics of Kevlar (R) woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci, 2003, 38: 2825–2833

    Article  CAS  Google Scholar 

  7. Erpenbeck JJ. Shear viscosity of the hard-sphere fluid via nonequilibrium molecular-dynamics. Phys Rev Lett, 1984, 52: 1333–1335

    Article  CAS  Google Scholar 

  8. Heyes DM. Shear thinning and thickening of the Lennard-Jones liquid: a molecular dynamics study. J Chem Soc, Faraday Trans 2, 1986, 82: 1365–1383

    Article  CAS  Google Scholar 

  9. Evans DJ, Morriss GP. Shear thickening and turbulence in simple fluids. Phys Rev Lett, 1986, 56: 2172–2175

    Article  Google Scholar 

  10. Delhommelle J, Petravic J, Evans DJ. Reexamination of string phase and shear thickening in simple fluids. Phys Rev E, 2003, 68: 031201

    Article  Google Scholar 

  11. Delhommelle J. Onset of shear thickening in a simple fluid. Eur Phys J E, Soft Matter, 2004, 15: 65–69

    Article  CAS  Google Scholar 

  12. Delhommelle J, Petravic J. Shear thickening in a model colloidal suspension. J Chem Phys, 2005, 123: 074707

    Article  Google Scholar 

  13. Cheng X, Xu X, Rice SA, Dinner AR, Cohen I. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow. Proc Natl Acad Sci USA, 2012, 109: 63–67

    Article  CAS  Google Scholar 

  14. Xu X, Rice SA, Dinner AR. Relation between ordering and shear thinning in colloidal suspensions. Proc Natl Acad Sci USA, 2013, 110: 3771–3776

    Article  CAS  Google Scholar 

  15. Brown E, Forman NA, Orellana CS, Zhang H, Maynor BW, Betts DE, DeSimone JM, Jaeger HM. Generality of shear thickening in dense suspensions. Nat Mater, 2010, 9: 220–224

    CAS  Google Scholar 

  16. Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D. Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett, 2008, 100: 018301

    Article  Google Scholar 

  17. Fall A, Lemaitre A, Bertrand F, Bonn D, Ovarlez G. Shear thickening and migration in granular suspensions. Phys Rev Lett, 2010, 105: 268303

    Article  Google Scholar 

  18. Fall A, Bertrand F, Ovarlez G, Bonn D. Shear thickening of cornstarch suspensions. J Rheol, 2012, 56: 575–591

    Article  CAS  Google Scholar 

  19. Foss DR, Brady JF. Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J Fluid Mech, 2000, 407: 167–200

    Article  CAS  Google Scholar 

  20. Hoffman RL. Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol, 1998, 42: 111–123

    Article  CAS  Google Scholar 

  21. Brown E, Jaeger HM. Dynamic jamming point for shear thickening suspensions. Phys Rev Lett, 2009, 103: 086001

    Article  Google Scholar 

  22. Brown E, Zhang H, Forman NA, Maynor BW, Betts DE, DeSimone JM, Jaeger HM. Shear thickening and jamming in densely packed suspensions of different particle shapes. Phys Rev E, 2011, 84: 031408

    Article  Google Scholar 

  23. Waitukaitis SR, Jaeger HM. Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature, 2012, 487: 205–209

    Article  CAS  Google Scholar 

  24. Heussinger C. Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters. Phys Rev E, 2013, 88: 050201

    Article  Google Scholar 

  25. Wyart M, Cates ME. Discontinuous shear thickening without inertia in dense non-brownian suspensions. Phys Rev Lett, 2014, 112: 098302

    Article  CAS  Google Scholar 

  26. Allen MP, Tildesley DJ. Computer Simulation of Liquids. New York: Oxford University Press, 1987

    Google Scholar 

  27. Evans DJ, Morriss GP. Statistical Mechanics of Nonequilibrium Liquids. London: Academic, 1990

    Google Scholar 

  28. Xu N, O’Hern CS. Effective temperature in athermal systems sheared at fixed normal load. Phys Rev Lett, 2005, 94: 055701

    Article  Google Scholar 

  29. Liu AJ, Nagel SR. Nonlinear dynamics: jamming is not just cool any more. Nature, 1998, 396: 21–22

    Article  CAS  Google Scholar 

  30. O’Hern CS, Silbert LE, Liu AJ, Nagel SR. Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E, 2003, 68: 011306

    Article  Google Scholar 

  31. Zhao C, Tian K, Xu N. New jamming scenario: from marginal jamming to deep jamming. Phys Rev Lett, 2011, 106: 125503

    Article  Google Scholar 

  32. Wang L, Xu N. Critical scaling in thermal systems near the zero-temperature jamming transition. Soft Matter, 2013, 9: 2475–2483

    Article  CAS  Google Scholar 

  33. Nosenko V, Ivlev AV, Morfill GE. Microstructure of a liquid two-dimensional dusty plasma under shear. Phys Rev Lett, 2012, 108: 135005

    Article  CAS  Google Scholar 

  34. Koumakis N, Laurati M, Egelhaaf SU, Brady JF, Petekidis G. Yielding of hard-sphere glasses during start-up shear. Phys Rev Lett, 2012, 108: 098303

    Article  CAS  Google Scholar 

  35. Dullens RP, Bechinger C. Shear thinning and local melting of colloidal crystals. Phys Rev Lett, 2011, 107: 138301

    Article  Google Scholar 

  36. Besseling R, Weeks ER, Schofield AB, Poon WC. Three-dimensional imaging of colloidal glasses under steady shear. Phys Rev Lett, 2007, 99: 028301

    Article  CAS  Google Scholar 

  37. Berthier L, Barrat JL. Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid. J Chem Phys, 2002, 116: 6228–6242

    Article  CAS  Google Scholar 

  38. Bagnold RA. Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc R Soc Lon Ser-A, 1954, 225: 49–63

    Article  Google Scholar 

  39. Durian DJ. Foam mechanics at the bubble scale. Phys Rev Lett, 1995, 75: 4780–4783

    Article  CAS  Google Scholar 

  40. Durian DJ. Bubble-scale model of foam mechanics: melting, nonlinear behavior, and avalanches. Phys Rev E, 1997, 55: 1739–1751

    Article  CAS  Google Scholar 

  41. Olsson P, Teitel S. Critical scaling of shear viscosity at the jamming transition. Phys Rev Lett, 2007, 99: 178001

    Article  Google Scholar 

  42. Ikeda A, Berthier L, Sollich P. Unified study of glass and jamming rheology in soft particle systems. Phys Rev Lett, 2012, 109: 018301

    Article  Google Scholar 

  43. Hansen JP, Mcdonald IR. Theory of Simple Liquids. Amsterdam: Elsevier, 2005

    Google Scholar 

  44. Kawasaki T, Ikeda A, Berthier L. Thinning or thickening? Multiple rheological regimes in dense suspensions of soft particles. Europhys Lett, 2014, 107: 28009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Shi, Y. & Xu, N. Signatures of shear thinning-thickening transition in steady shear flows of dense non-Brownian yield stress systems. Sci. China Chem. 58, 1013–1020 (2015). https://doi.org/10.1007/s11426-015-5335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5335-8

Keywords

Navigation