Skip to main content
Log in

Mechanical, vibrational, and dynamical properties of amorphous systems near jamming

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Amorphous systems undergo the jamming transition when the density increases, temperature drops, or external shear stress decreases, as described by the jamming phase diagram which was proposed to unify different processes such as the glass transition, random close packing, and yielding under shear stress. At zero temperature and shear stress, the jamming transition occurs at a critical density at Point J. In this paper, we review recent studies of the material properties of marginally jammed solids and the glassy dynamics in the vicinity of Point J. As the only singular point in the jamming phase diagram, Point J exhibits special criticality in both mechanical and vibrational quantities. Dynamics approaching the glass transition in the vicinity of Point J show critical scalings, suggesting that the molecular glass transition and the colloidal glass transition are equivalent in the hard sphere limit. All these studies shed light on the long-standing puzzles of the glass transition and unusual properties of amorphous solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Liu and S. R. Nagel, Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic scales, New York: Taylor & Francis, 2001

    Google Scholar 

  2. M. van Hecke, J. Phys.: Condens. Matter, 2010, 22: 033101

    Article  ADS  Google Scholar 

  3. A. J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, http://www.ilorentz.org/.saarloos/Papers/jammingreview.pdf, 2010

  4. A. J. Liu and S. R. Nagel, Ann. Rev. Condens. Matt. Phys., 2010 (to be published)

  5. G. Parisi and F. Zamponi, Rev. Mod. Phys., 2010, 82: 789

    Article  ADS  Google Scholar 

  6. A. J. Liu and S. R. Nagel, Nature (London), 1998, 396: 21

    Article  ADS  Google Scholar 

  7. V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz, Nature (London), 2001, 411: 772

    Article  ADS  Google Scholar 

  8. Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, Nature (London), 2009, 459: 230

    Article  ADS  Google Scholar 

  9. P. G. Debenedetti and F. H. Stillinger, Nature (London), 2001, 410: 259

    Article  ADS  Google Scholar 

  10. C. A. Angell, J. Non-Cryst. Solids, 1991, 131: 13

    Article  ADS  Google Scholar 

  11. C. A. Angell, Science, 1995, 267: 1924

    Article  ADS  Google Scholar 

  12. A. Cavagna, Phys. Rep., 2009, 476: 51

    Article  ADS  Google Scholar 

  13. W. Kauzmann, Chem. Rev., 1948, 43: 219

    Article  Google Scholar 

  14. G. Adams and J. H. Gibbs, J. Chem. Phys., 1965, 43: 139

    Article  ADS  Google Scholar 

  15. M. Goldstein, J. Chem. Phys., 1969, 51: 3728

    Article  ADS  Google Scholar 

  16. E. Leutheusser, Phys. Rev. A, 1984, 29: 2765

    Article  ADS  Google Scholar 

  17. F. H. Stillinger, Science, 1995, 267: 1935

    Article  ADS  Google Scholar 

  18. E. Lerner, I. Procaccia, and J. Zylberg, Phys. Rev. Lett., 2009, 102: 125701

    Article  ADS  Google Scholar 

  19. R. Yamamoto and A. Onuki, Phys. Rev. E, 1998, 58: 3515

    Article  ADS  Google Scholar 

  20. N. Lačević, F. W. Starr, T. B. Schroder, and S. C. Glotzer, J. Chem. Phys., 2003, 119: 7372

    Article  ADS  Google Scholar 

  21. L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, D. El Masri, D. L′Hôte, F. Ladieu, and M. Pierno, Science, 2005, 310: 1797

    Article  ADS  Google Scholar 

  22. J. D. Eaves and D. R. Reichman, PNAS, 2009, 106: 15171

    Article  ADS  Google Scholar 

  23. Amorphous Solids. Low Temperature Properties, edited by W. A. Phillips, Berlin: Springer-Verlag, 1981

    Google Scholar 

  24. A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Phys. Rev. B, 1995, 52: R9815

    Article  ADS  Google Scholar 

  25. T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod. Phys., 1994, 66: 381

    Article  ADS  Google Scholar 

  26. R. O. Pohl, X. Liu, and E. Thompson, Rev. Mod. Phys., 2002, 74: 991

    Article  ADS  Google Scholar 

  27. A. I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, and W. Petry, Phys. Rev. Lett., 2004, 92: 245508

    Article  ADS  Google Scholar 

  28. D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B, 1992, 46: 6131

    Article  ADS  Google Scholar 

  29. D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel, and H. M. Jaeger, Nature (London), 2000, 406: 385

    Article  ADS  Google Scholar 

  30. W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub, Phys. Rev. Lett., 2000, 85: 1428

    Article  ADS  Google Scholar 

  31. D. Howell, R. P. Behringer, and C. Veje, Phys. Rev. Lett., 1999, 82: 5241

    Article  ADS  Google Scholar 

  32. N. Xu, C. S. O’Hern, and L. Kondic, Phys. Rev. Lett., 2005, 94: 016001

    Article  ADS  Google Scholar 

  33. N. Xu, C. S. O’Hern, and L. Kondic, Phys. Rev. E, 2005, 72: 041504

    Article  ADS  Google Scholar 

  34. H. A. Barnes, J. Rheology, 1989, 33: 329

    Article  ADS  Google Scholar 

  35. E. Brown, N. A. Forman, C. S. Orellana, H. Zhang, B. W. Maynor, D. E. Betts, J. M. DeSimone, and H. M. Jaeger, arXiv: 0907.4999, 2009

  36. N. J. Wagner and J. F. Brady, Phys. Today, 2009, 62: 27

    Article  Google Scholar 

  37. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys., 1971, 54: 5237

    Article  ADS  Google Scholar 

  38. W. Kob and H. C. Andersen, Phys. Rev. E, 1995, 51: 4626

    Article  ADS  Google Scholar 

  39. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran 77, New York: Cambridge University Press, 1986

    Google Scholar 

  40. http://www.eecs.northwestern.edu/~nocedal/lbfgs.html

  41. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford: Oxford University Press, 1987

    MATH  Google Scholar 

  42. N. Xu and C. S. O’Hern, Phys. Rev. Lett., 2005, 94: 055701

    Article  ADS  Google Scholar 

  43. D. J. Durian, Phys. Rev. Lett., 1995, 75: 4780

    Article  ADS  Google Scholar 

  44. D. J. Durian, Phy. Rev. E, 1997, 55: 1739

    Article  ADS  Google Scholar 

  45. T. C. Hales, Ann. Math., 2005, 162: 1065

    Article  MATH  MathSciNet  Google Scholar 

  46. J. D. Bernal, Nature (London), 1960, 188: 910

    Article  ADS  Google Scholar 

  47. C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett., 2002, 88: 075507

    Article  ADS  Google Scholar 

  48. C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E, 2003, 68: 011306

    Article  ADS  Google Scholar 

  49. D. Frenkel, Random close packing: Time for a new Kepler conjecture? http://www.physics.leidenuniv.nl

  50. C. Song, P. Wang, and H. A. Makse, Nature (London), 2008, 453: 629

    Article  ADS  Google Scholar 

  51. H. A. Makse, D. L. Johnson, and L. M. Schwartz, Phys. Rev. Lett., 2000, 84: 4160

    Article  ADS  Google Scholar 

  52. E. Somfai, M. van Hecke, W. G. Ellenbroek, K. Shundyak, and W. van Saarloos, Phys. Rev. E, 2007, 75: 020301(R)

    Article  ADS  Google Scholar 

  53. K. Shundyak, M. van Hecke, and W. van Saarloos, Phys. Rev. E, 2007, 75: 010301(R)

    Article  ADS  Google Scholar 

  54. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett, 2000, 84: 2064

    Article  ADS  Google Scholar 

  55. N. Xu, J. Blawzdziewicz, and C. S. O’Hern, Phys. Rev. E, 2005, 71: 061306

    Article  ADS  Google Scholar 

  56. N. Xu, D. Frenkel, and A. J. Liu, unpublished

  57. A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science, 2004, 303: 990

    Article  ADS  Google Scholar 

  58. W. N. Man, A. Donev, F. H. Stillinger, M. T. Sullivan, W. B. Russel, D. Heeger, S. Inati, S. Torquato, and P. M. Chaikin, Phys. Rev. Lett., 2005, 94: 198001

    Article  ADS  Google Scholar 

  59. M. Mailman, C. F. Schreck, C. S. O’Hern, and B. Chakraborty, Phys. Rev. Lett., 2009, 102: 255501

    Article  ADS  Google Scholar 

  60. Z. Zeravcic, N. Xu, A. J. Liu, S. R. Nagel, and W. van Saarloos, Europhys. Lett., 2009, 87: 26001

    Article  ADS  Google Scholar 

  61. L. N. Zou, X. Cheng, M. L. Rivers, H. M. Jaeger, and S. R. Nagel, Science, 2009, 326: 408

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. N. Xu and E. S. C. Ching, Soft Matter, 2010, 6: 2944

    Article  ADS  Google Scholar 

  63. N. Xu, arXiv: 0911.1576, 2009

  64. A. Donev, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett., 2005, 95: 090604

    Article  ADS  Google Scholar 

  65. L. E. Silbert and M. Silbert, Phys. Rev. E, 2009, 80: 041304

    Article  ADS  Google Scholar 

  66. N. Xu, A. J. Liu, and T. C. Lubensky, unpublished

  67. D. J. Durian, Phys. Rev. E, 1997, 55: 1739

    Article  ADS  Google Scholar 

  68. T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer, Phys. Rev. Lett., 2007, 98: 058001

    Article  ADS  Google Scholar 

  69. P. Olsson and S. Teitel, Phys. Rev. Lett., 2007, 99: 178001

    Article  ADS  Google Scholar 

  70. T. Hatano, arXiv: 0804.0477, 2008

  71. L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett., 2005, 95: 098301

    Article  ADS  Google Scholar 

  72. M. Wyart, S. R. Nagel, and T. A. Witten, Europhys. Lett., 2005, 72: 486

    Article  ADS  Google Scholar 

  73. M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Phys. Rev. E, 2005, 72: 051306

    Article  ADS  Google Scholar 

  74. J. A. Drocco, M. B. Hastings, C. J. O. Reichhardt, and C. Reichhardt, Phys. Rev. Lett., 2005, 95: 088001

    Article  ADS  Google Scholar 

  75. W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett., 2006, 97: 258001

    Article  ADS  Google Scholar 

  76. A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian, Nature Physics, 2007, 3: 260

    Article  ADS  Google Scholar 

  77. D. A. Head, Phys. Rev. Lett., 2009, 102: 138001

    Article  ADS  Google Scholar 

  78. N. Xu, V. Vitelli, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett., 2009, 102: 038001

    Article  ADS  Google Scholar 

  79. V. Vitelli, N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. E, 2010, 81: 021301

    Article  ADS  Google Scholar 

  80. P. W. Anderson, Phys. Rev., 1958, 109: 1492

    Article  ADS  Google Scholar 

  81. E. Duval, A. Boukenter, and T. Achibat, J. Phys.: Condens. Matter, 1990, 2: 10227

    Article  ADS  Google Scholar 

  82. T. Keyes, J. Phys. Chem. A, 1997, 101: 2921

    Article  Google Scholar 

  83. W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett., 1998, 81: 136

    Article  ADS  Google Scholar 

  84. P. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl, Contemp. Phys., 2000, 41: 15

    Article  ADS  Google Scholar 

  85. D. A. Parshin and C. Laermans, Phys. Rev. B, 2001, 63: 132203

    Article  ADS  Google Scholar 

  86. J.W. Kantelhardt, S. Russ, and A. Bunde, Phys. Rev. B, 2001, 63: 064302

    Article  ADS  Google Scholar 

  87. T. Nakayama, Rep. Prog. Phys., 2002, 65: 1195

    Article  ADS  Google Scholar 

  88. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B, 2003, 67: 094203

    Article  ADS  Google Scholar 

  89. T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Nature (London), 2003, 422: 289

    Article  ADS  Google Scholar 

  90. H. Shintani and H. Tanaka, Nature Mater., 2008, 7: 870

    Article  ADS  Google Scholar 

  91. W. A. Phillips, J. Low Temp. Phys., 1972, 7: 351

    Article  ADS  Google Scholar 

  92. C. Kittel, Phys. Rev., 1949, 75: 972

    Article  ADS  Google Scholar 

  93. M. Wyart, Ann. Phys. (Paris), 2005, 30: 1

    Google Scholar 

  94. N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett., 2007, 98: 175502

    Article  ADS  Google Scholar 

  95. N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel, 2010, 90: 56001

    Google Scholar 

  96. A. Souslov, A. J. Liu, and T. C. Lubensky, Phys. Rev. Lett., 2009, 103: 205503

    Article  ADS  Google Scholar 

  97. X. Mao, N. Xu, and T. C. Lubensky, Phys. Rev. Lett., 2010, 104: 085504

    Article  ADS  Google Scholar 

  98. L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E, 2009, 79: 021308

    Article  ADS  Google Scholar 

  99. Z. Zeravcic, W. van Saarloos, and D. R. Nelson, Europhys. Lett., 2008, 83: 44001

    Article  ADS  Google Scholar 

  100. H. R. Schober and G. Ruocco, Phil. Mag., 2004, 84: 1361

    Article  ADS  Google Scholar 

  101. P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Phil. Mag. B, 1999, 79: 1715

    Article  ADS  Google Scholar 

  102. A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nature Phys., 2008, 4: 711

    Article  ADS  Google Scholar 

  103. C. Liu and S. R. Nagel, Phys. Rev. Lett., 1992, 68: 2301

    Article  ADS  Google Scholar 

  104. C. Liu and S. R. Nagel, Phys. Rev. B, 1993, 48: 15646

    Article  ADS  Google Scholar 

  105. X. Jia, C. Caroli, and B. Velicky, Phys. Rev. Lett., 1999, 82: 1863

    Article  ADS  Google Scholar 

  106. X. Jia, Phys. Rev. Lett., 2004, 93: 154303

    Article  ADS  Google Scholar 

  107. P. B. Allen and J. L. Feldman, Phys. Rev. Lett., 1989, 62: 645

    Article  ADS  Google Scholar 

  108. P. B. Allen and J. L. Feldman, Phys. Rev. B, 1993, 48: 12581

    Article  ADS  Google Scholar 

  109. A. F. Ioffe and A. R. Regel, Prog. Semicond., 1960, 4: 237

    Google Scholar 

  110. L. Cipelletti and L. Ramos, J. Phys.: Condens. Matter, 2005, 17: R253

    Article  ADS  Google Scholar 

  111. C. Heussinger and J. L. Barrat, Phys. Rev. Lett., 2009, 102: 218303

    Article  ADS  Google Scholar 

  112. M. P. Ciamarra, and A. Coniglio, Phys. Rev. Lett., 2009, 103: 235701

    Article  ADS  Google Scholar 

  113. J. Mattsson, H. M. Wyss, A. Fernandez-Nieves, K. Miyazaki, Z. Hu, D. R. Reichman, and D. A. Weitz, Nature (London), 2009, 462: 83

    Article  ADS  Google Scholar 

  114. N. Xu, T. K. Haxton, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett., 2009, 103: 245701

    Article  ADS  Google Scholar 

  115. W. Kob and H. C. Andersen, Phys. Rev. E, 1995, 52: 4134

    Article  ADS  Google Scholar 

  116. Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B, 2009, 113: 5563

    Article  Google Scholar 

  117. G. Lois, J. Blawzdziewicz, and C. S. O’Hern, Phys. Rev. Lett., 2008, 100: 028001

    Article  ADS  Google Scholar 

  118. P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Nature (London), 2007, 453: 499

    Article  ADS  Google Scholar 

  119. G. J. Gao, J. Blawzdziewicz, C. S. O’Hern, and M. Shattuck, Phys. Rev. E, 2009, 80: 061304

    Article  ADS  Google Scholar 

  120. A. R. Abate and D. J. Durian, Phys. Rev. E, 2006, 74: 031308

    Article  ADS  Google Scholar 

  121. X. Cheng, Phys. Rev. E, 2010, 81: 031301

    Article  ADS  Google Scholar 

  122. X. Cheng, arXiv: 0911.1943, 2009

  123. K. Chen, W. G. Ellenbroek, Z. Zhang, D. T. N. Chen, P. Yunker, S. Henkes, C. Brito, O. Dauchot, W. van Saarloos, A. J. Liu, and A. G. Yodh, arXiv: 1003.3065, 2010

  124. P. Yunker, Z. Zhang, K. B. Aptowicz, and A. G. Yodh, Phys. Rev. Lett., 2009, 103: 115701

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xu  (徐宁).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, N. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front. Phys. China 6, 109–123 (2011). https://doi.org/10.1007/s11467-010-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-010-0102-y

Keywords

Navigation