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Universal scaling of the stress-strain curve in amorphous solids
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The yielding transition of amorphous solids is a phase transition with a special type of universality. Critical
exponents and scaling relations have been defined and proposed near the yield stress. We show here that, even in
the initial stage of shear far below the yield stress, the stress-strain curve of amorphous solids also shows critical
scaling with universal exponents. The key point is to remove the elastic part of the strain, and the shear stress
exhibits a sublinear scaling with the plastic strain. We show how this critical scaling is related to the finite size
effect of the minimum strain to trigger the first plastic avalanche after a quench. We point out that this sublinear
scaling between the stress and the plastic strain implies the divergence of a high-order shear modulus. A scaling
relation is derived between two exponents characterizing the stress-strain curve and the density distribution of
the local stabilities, respectively. We test the critical scaling of the stress-strain curve using both mesoscopic and
atomistic simulations and get satisfying agreement in two and three dimensions.
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The stress-strain curve characterizes the response of amor-
phous solids, such as emulsions, foams, and molecular glasses
against the external shear stress [1–4]. In the beginning of
shear, the materials respond elastically, and as one increases
the stress or strain further, the plastic deformation starts to
accumulate. When the stress reaches the yield stress, the stress-
strain curve enters a plateau, and the system starts to flow [5–8].
The corresponding transition is called the yielding transition.
A lot of attention has been focused on the critical dynamics
near the yielding transition [9–12], e.g., power-law distributed
avalanches and singular flow curves with a series of critical
exponents. On the other hand, much less investigation has been
performed on the beginning stage of the stress-strain curve.
It is well known that the deviation of the stress-strain curve
from the linear behavior is because of the plastic strain,
hidden in the stress-strain curve and reflecting the amount of
elastic energy that has been relaxed by plasticity. A common
protocol to investigate the stress-strain curve is to first quench
a fluid at high temperatures to zero temperature and apply a
quasistatic shear afterwards as illustrated in Fig. 1(a). It has
been shown that the minimum strain γmin to trigger the first
plastic deformation after a thermal quench exhibits a nontrivial
finite size scaling with the system size N, γmin ∼ N−1/(1+θ0)

with the exponent θ0 ≈ 0.5 [13–15]. It is thus natural to ask if
there is any other critical behavior hidden in the mechanical
response of amorphous solids even at low stress. In this paper,
we show that the stress-strain curve indeed exhibits universal
scaling behavior at low stress after we subtract the elastic part
of the strain.

During the plastic deformation, localized plastic rearrange-
ments, shear transformation zones, organize into avalanches
mediated by the long-range elastic coupling [16–20]. Ex-
perimentally, one can apply either the strain-control or the
stress-control method. In the strain-control case, the stress is
relaxed, and the total strain is fixed during plastic avalanches,
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whereas in the stress-control case, the stress is fixed, and
the total strain increases during plastic avalanches [21]. For
both methods, the stress is increased quasistatically between
two consecutive avalanches, and the resulting stress-strain
curves (σ vs γ ) coincide in the thermodynamic limit. The
comparisons between the two methods on the microscopic
scale are shown in the insets of Figs. 1(b) and 1(c). The
avalanches in the stress-control case can be considered to be
composed of several avalanches in the strain-control case as
illustrated in the inset of Fig. 1(b) in which the plastic stress
drop δσp and the plastic strain increment δε also are shown.
From the slope of the stress-strain curve in the limit γ → 0,
we can get the shear modulus μ = dσ/dγ (γ → 0) as shown
in Fig. 1(b). Because the elastic strain is proportional to the
stress by the shear modulus, one can extract the plastic strain
as the difference between the total strain and the elastic strain,

ε = γ − σ

μ
, (1)

where the second part on the right side is the elastic part of the
total strain. The resulting stress-plastic strain curve is shown
in Fig. 1(c). The main point of this paper is to show that the
scaling relation between the stress and the plastic strain at low
stress is singular,

σ ∼ εα, (2)

with α < 1 and a scaling relation exists between α and θ0.
Because θ0 is universal, so is α. Moreover, the above scaling
relation between the stress and the plastic strain implies that
the high-order shear modulus diverges, consistent with recent
calculations in the infinite dimensions [1]. In the following,
we first derive the scaling relation between the stress and
the plastic strain. Then we explain how θ0 is connected to α

and argue their universality. We prove that a singular relation
between the stress and the plastic strain gives rise to the
divergence of a high-order shear modulus. Finally, we test
our theories using both the mesoscopic elastoplastic model
[8,12,22,23] and the atomistic numerical simulations and get
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FIG. 1. (a) Before the implementation of shear, one typical way to prepare the amorphous solid is to rapidly quench a fluid at high
temperatures to zero temperature. (b) After the quench, one can exert quasistatic shear by the stress-control or strain-control method. The
main panel shows the resulting stress- (σ -) strain (γ ) curve. The two methods coincide in the thermodynamic limit, and their difference on the
microscopic scale is shown in the inset: during the plastic deformation (avalanches), the stress is conserved in the stress-control case (blue)
whereas the stress relaxes in the strain-control case (red). The resulting plastic strain increment δε and plastic stress drop δσp are shown. In
the limit γ → 0 (or σ → 0), the slope of the stress-strain curve becomes the shear modulus μ. (c) The stress-plastic strain (ε) curve after
subtracting the elastic strain part. In the low stress limit, the stress has a power-law scaling relation with the plastic strain. The inset shows the
difference between the stress-control and the strain-control methods.

satisfying agreement in both two dimensions (2D) and three
dimensions (3D).

I. THEORETICAL DERIVATIONS

Since the stress-strain curves are the same for stress-control
and strain-control protocols, we focus on the stress-control
case, and the conclusions equally are valid for the strain-
control case. Between two plastic avalanches, the stress
increment δσ to trigger the next avalanche during quasistatic
shear scales as δσ ∼ N−1/[1+θ(σ )]. The θ exponent is a function
of σ and varies between 0 and 1 [2,15]. The plastic strain
increment [the length of the blue horizontal line in the inset of
Fig. 1(c)] due to the triggered avalanche becomes δε ∼ S/N ,
where S is the avalanche size, which is the number of local
plastic events involved in the avalanche. Given the expressions
of δσ and δε, we can find the expression for the local slope of
the stress-plastic strain curve in the thermodynamic limit,

∂σ

∂ε
∼ Nθ/(θ+1)

〈S〉 . (3)

Because the first triggered avalanche only involves a finite
number of local plastic events as supported numerically [24],
we have S ∼ 1 as ε → 0 and obtain

∂σ/∂ε ∼ Nθ0/(θ0+1). (4)

Here θ0 = θ (σ → 0), the θ exponent right after the quench.
On the other hand, because ε ∼ N−1 in the limit ε → 0, one
can write Eq. (4) as ∂σ/∂ε ∼ ε−[θ0/(θ0+1)]. After integration,
we obtain the scaling relation between the stress and the plastic
strain in the initial stage of shear, σ ∼ εα with

α = 1

1 + θ0
. (5)

The θ exponent is also the exponent characterizing the
distribution of local stability. In the elastoplastic viewpoint,
the amorphous solid is coarse grained into N blocks, each
characterized by a local scalar stress σi and a local failure
threshold σ th

i . The local stability of block i is defined as
xi = σ th

i − σi . It has been shown that the distribution of

the local stabilities scales as P (x) ∼ xθ for small x [8,25].
To trigger an instability, one only needs to destabilize the
least stable block, and the stress increment is essentially
the smallest x in a finite system δσ ∼ xmin ∼ N−[1/(1+θ)].
The values of the θ exponent have been reported to be universal
right after a quench [25,26], θ0 ≈ 0.5 for both two and three
dimensions. The mean field value of θ0 = 1/2 in the infinite
dimensions limit has been calculated exactly [20], consistent
with simulations in finite dimensions. Given the universal
value of θ0, one obtains

α = 2

3
, (6)

which is universally valid as well. Mean field models [20] and
numerical simulations [15] have demonstrated a nonmono-
tonic behavior of the θ exponent as the stress increases from
the quench. Here we remark that it is only the exponent θ0

right after the quench affects the scaling in the low stress limit,
independent of the θ exponent at higher stress. Theoretically, it
turns out to be challenging to find the upper limit of the plastic
strain below which the scaling behavior is valid. As we show
numerically below, we indeed find the power-law scaling is
valid in a finite interval of strain therefore covering an infinite
number of avalanches in the thermodynamic limit [2].

II. DIVERGENCE OF THE HIGH-ORDER
SHEAR MODULUS

To be simple, we set μ = 1, and the scaling relation between
σ and ε now becomes σ ∼ γ − σ 1/α . Using Eq. (5), we get

σ ∼ γ − σ 1+θ0 , (7)

and by taking derivatives, we obtain the scaling of the high-
order shear modulus as

dnσ

dγ n
∼ σ θ0+1−n, (8)

with n � 2. Because 0 < θ0 < 1, the high-order shear mod-
ulus diverges in the low stress limit. Molecular dynamics
simulations indeed have shown that the nonlinear elasticity
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σ = μγ + μ2γ
2 + μ3γ

3 + · · · breaks down for amorphous
solids [4,27–29]. A finite θ exponent in the distribution of local
stabilities not only affects the distribution of avalanches [2,30],
but also has a strong impact on the stress-strain curve. Our
theories are consistent with recent calculations in the infinite
dimension [1], which shows the divergence of the high-order
shear modulus at low temperatures. In the following, we test
our results using two very different numerical simulations.
Despite the dramatic difference in detail, the scaling relation
we obtain between the stress and the plastic strain is universal
as we expect.

III. MESOSCOPIC MODEL

We model two- and three-dimensional amorphous solids as
consisting of N blocks (sites), each characterized by a scalar
local stress σi and a local failure threshold σ th. The overall
shear stress is σ = ∑

i σi/N . We first prepare the system at
a finite temperature T with zero shear stress. At zero stress,
the sites have an equal chance to yield at the positive and
negative thresholds, so the local stability is xi = min(σ th −
σi,σi + σ th). We model the effect of finite temperature by the
dependence of the local yielding rate on the local stability,

ri = e−x2
i /T (9)

for xi > 0 and ri = 1 for xi < 0. We first let the system
equilibrate after a long enough time at temperature T then
quench the system to T = 0 after which only sites with
negative local stabilities can yield. Then we shear the system
quasistatically by increasing the shear stress σ until the least
stable site yields. Unstable sites have a constant rate of 1/τc to
yield. A local yielding increases the local plastic strain δεi = ε0

and an overall increment of plastic strain δε = ε0/N . The
local yielding also reduces the stress locally by some amount
δσi = μδεi where μ is the shear modulus and affects stress in
other locations via a long-range Eshelby field δσj = G(�rij )
σi

[21], which can in turn trigger new instabilities. We shear the
system using the stress-control method and periodic boundary
condition, so the shear stress is fixed during avalanches and
increases between avalanches. We set σ th = 0.55, ε0 = μ =
τc = 1 in both two and three dimensions.

IV. ATOMISTIC SIMULATIONS

We also perform numerical simulations based on real
spherical particles. The systems are two or three dimensional
with side length L in all directions. To avoid crystallization,
we set N/2 large and N/2 small disks with equal mass m in
the system. The diameter ratio of the large to small particles is
1.4. The interparticle potential is

U (rij ) =
{
u(1 − rij /dij )2/2 for rij < dij ,

0 for rij � dij ,
(10)

where rij and dij are the separation between the particles i and
j and the sum of their radii. We set the units of mass, energy,
and length to be m, u, and a small particle diameter. Before
shear, we generate 100 static states at fixed packing fractions
φ = 0.95 (two dimensions) and φ = 0.75 (three dimensions)
by applying the fast inertial relaxation engine minimization
method [31] to minimize the potential energy U = ∑

ij U (rij )

of initially random configurations where the sum is over all
pairs of interacting particles. The shear deformation is realized
by applying a small shear strain step 
γ using Lees-Edwards
boundary conditions [32,33]. The simulation proceeds by
minimizing the total potential energy U after each affine
change in the boundary conditions and particle coordinates.
We choose the strain step small enough that our results do not
depend on the value of 
γ .

V. NUMERICAL RESULTS

We calculate the plastic strain using Eq. (1) and extract the
shear modulus from the initial linear slope of the stress-strain
curve. We compute the shear modulus from the elastic part of
the stress-strain curve before the first avalanche, based on the
assumption that the shear modulus is constant during the shear
process. We can relax this condition and define the plastic
strain alternatively [4]. As illustrated in the inset of Fig. 1(b),
we compute the plastic strain as the accumulation of the plastic
strain increments (δε) during avalanches,

ε =
∑

i

δεi . (11)

Similarly we define the plastic stress, which is another
quantity characterizing the total plastic deformation, as the
accumulation of the plastic stress drops (δσp),

σp =
∑

i

δσpi, (12)

where i is the index of avalanches and the summation is over
all avalanches below the shear stress σ . In the mesoscopic
simulations, because the shear modulus is constant, the two
definitions of plastic strain Eqs. (1) and (11) and the plastic
stress Eq. (12) are all equivalent. For the atomistic simulations,
we compare all three calculations of the plastic strain (stress).
The resulting relations for both simulations are shown in Fig. 2.
Our prediction of σ ∼ ε2/3 (or σ ∼ σ

2/3
p for the plastic stress)

is satisfyingly confirmed for all cases.
We further test the scaling relation between α and θ0 by

measuring θ0 independently. For the mesoscopic model, we
measure the distribution of local stabilities x right after the
quench directly. For the atomistic simulations, we measure
the θ0 exponent indirectly through the finite size scaling of
the minimum strain γmin to trigger the first avalanche. Both
simulations are consistent with θ0 ≈ 0.5 as shown in Fig. 3.

VI. DISCUSSION

In this paper, we uncover a universal scaling relation
between the stress and the plastic strain in the initial stage
of the stress-strain curve. The scaling relation is universal and
independent of microscopic details as we confirmed using two
entirely different simulations. The shear stress turns out to be
singularly dependent on the plastic strain due to the plastic
avalanches. The main reason for such a singular behavior
is the asymmetrical finite size scaling between the strain to
trigger the first avalanche γmin ∼ N−1/(1+θ0) and the plastic
strain generated by the first avalanche ε ∼ 1/N . Because
α = 1

1+θ0
and 0 < θ0 < 1, the second- and higher-order shear

moduli all diverge in the low stress limit [1,4,27]. So the
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FIG. 2. The stress (σ ) vs plastic strain (ε) or plastic stress (σp)
for the mesoscopic simulations and atomistic simulations. The black
dashed line has a slope of 2/3. The stress is in arbitrary units. For the
mesoscopic simulations, the shear modulus is set to be constant. The
system sizes are N = 5122 in 2D and N = 643 in 3D. The curve is
averaged over 100 samples. The initial temperature before the infinite
quench is T = 1 (2D) and T = 2 (3D). For the atomistic simulations,
the system sizes are N = 8192 (2D) and N = 4096 (3D). We first
calculate the shear modulus as the average slope of the stress-strain
curve in the initial elastic response before the first avalanche. After
subtracting the elastic strain according to Eq. (1), we obtain the
stress-plastic strain curve for one sample and then average over 100
samples (atomistic). We also compute the plastic strain based on
Eq. (11) (plastic strain) and the plastic stress based on Eq. (12) (plastic
stress). The curves of the atomistic simulations are shifted arbitrarily
on the y axis for clarity. We implement stress-control (strain-control)
quasistatic shear to the mescoscopic (atomistic) simulations.

stress-strain curve is far from smooth by nature due to plastic
avalanches.

On the experimental side, our paper provides a simple and
straightforward method to characterize the plasticity of generic
amorphous materials. Given a stress-strain curve, one imme-
diately can obtain the corresponding stress-plastic strain curve
by removing the elastic strain. Although the systems we study
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FIG. 3. The distribution of local stabilities xi = σ th − σi right
after the quench P (x) for the mesoscopic model. The black lines
have a slope of 0.5 both for 2D and 3D. The insets: the finite size
scaling of the minimum strain to trigger the first avalanche right after
a quench for the atomistic simulations. The black lines have a slope
of −2/3. Using the scaling γmin ∼ N−1/(1+θ0), we obtain θ0 = 0.5 as
well.

including the coarse-grained model and spherical repulsive
particles are idealized, the scaling relation we propose between
the shear stress and the plastic strain generally is valid and
equally applies to other soft matter systems, e.g., gel, polymer
glass, granular material, and colloidal systems [34]. Similar to
the Herschel-Bulkley exponent characterizing the flow curves
of yield stress materials [7], we uncover a systematic method
to identify the universality of plastic deformation. It will be a
promising and interesting future direction to unify soft matter
systems based on the exponent α we propose.

On the theoretical side, we show that the sublinear scaling
between the stress and the plastic strain due to the plastic
avalanches is equivalent to the divergence of a high-order shear
modulus. Although our theoretical analysis is so simple, we
get essentially the same conclusion as other theoretical works
based on more involved calculations in the infinite dimensions
[1]. Our paper therefore raises a deep question on the
connection between these two entirely different approaches,
for example, the connection between the pseudogap exponent
in the distribution of local stabilities and the so-called Gardner
transition [35,36].

It has been shown that decreasing the quench rate could
make the system go from ductile to brittle and prone to shear
band formation [2,24]. Because the scaling relation between
the stress and the plastic strain is for low stress, we expect
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the general scaling σ ∼ εα is robust against the quench rate.
Numerical simulations have reported a larger θ0 exponent for
the slow quench compared with the rapid quench [26], leading
to a smaller α. It is certainly a future direction to study the
effects of the quench rate on the critical scaling of the stress-
strain curve.

ACKNOWLEDGMENTS

We thank M. Wyart for discussions related to this paper.
W.Z. acknowledges support from the National Natural Science
Foundation of China Grants No. 11702289 and No. 11574278
and the Anhui Provincial Natural Science Foundation Grant
No. 1708085QA07.

[1] G. Biroli and P. Urbani, Nat. Phys. 12, 1130 (2016).
[2] J. Lin, T. Gueudré, A. Rosso, and M. Wyart, Phys. Rev. Lett.

115, 168001 (2015).
[3] R. L. Moorcroft and S. M. Fielding, Phys. Rev. Lett. 110, 086001

(2013).
[4] A. K. Dubey, I. Procaccia, C. A. B. Z. Shor, and M. Singh, Phys.

Rev. Lett. 116, 085502 (2016).
[5] A. Tanguy, F. Leonforte, and J.-L. Barrat, Eur. Phys. J. E 20,

355 (2006).
[6] A. Lemaître and C. Caroli, Phys. Rev. E 76, 036104 (2007).
[7] D. Bonn, J. Paredes, M. M. Denn, L. Berthier, T. Divoux, and

S. Manneville, Rev. Mod. Phys. 89, 035005 (2017).
[8] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proc. Natl. Acad.

Sci. USA 111, 14382 (2014).
[9] K. M. Salerno, C. E. Maloney, and M. O. Robbins, Phys. Rev.

Lett. 109, 105703 (2012).
[10] A. Lemaître and C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).
[11] K. Martens, L. Bocquet, and J.-L. Barrat, Phys. Rev. Lett. 106,

156001 (2011).
[12] C. Liu, E. E. Ferrero, F. Puosi, J.-L. Barrat, and K. Martens,

Phys. Rev. Lett. 116, 065501 (2016).
[13] S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82,

055103(R) (2010).
[14] J. Lin, A. Saade, E. Lerner, A. Rosso, and M. Wyart, Europhys.

Lett. 105, 26003 (2014).
[15] H. G. E. Hentschel, P. K. Jaiswal, I. Procaccia, and S. Sastry,

Phys. Rev. E 92, 062302 (2015).
[16] M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998).
[17] A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clément,

Phys. Rev. Lett. 108, 135502 (2012).
[18] A. Le Bouil, A. Amon, J.-C. Sangleboeuf, H. Orain, P. Bésuelle,

G. Viggiani, P. Chasle, and J. Crassous, Granular Matter 16, 1
(2014).

[19] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118
(2006).

[20] J. Lin and M. Wyart, Phys. Rev. X 6, 011005 (2016).
[21] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Eur. Phys. J.

E 15, 371 (2004).
[22] M. Talamali, V. Petäjä, D. Vandembroucq, and S. Roux, Phys.

Rev. E 84, 016115 (2011).
[23] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Phys. Rev. E

71, 010501(R) (2005).
[24] M. Fan, M. Wang, K. Zhang, Y. Liu, J. Schroers, M. D. Shattuck,

and C. S. O’Hern, Phys. Rev. E 95, 022611 (2017).
[25] S. Karmakar, E. Lerner, I. Procaccia, and J. Zylberg, Phys. Rev.

E 82, 031301 (2010).
[26] S. Patinet, D. Vandembroucq, and M. L. Falk, Phys. Rev. Lett.

117, 045501 (2016).
[27] H. G. E. Hentschel, S. Karmakar, E. Lerner, and I. Procaccia,

Phys. Rev. E 83, 061101 (2011).
[28] I. Procaccia, C. Rainone, C. A. B. Z. Shor, and M. Singh, Phys.

Rev. E 93, 063003 (2016).
[29] V. Dailidonis, V. Ilyin, I. Procaccia, and C. A. B. Z. Shor, Phys.

Rev. E 95, 031001(R) (2017).
[30] E. A. Jagla, Phys. Rev. E 92, 042135 (2015).
[31] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,

Phys. Rev. Lett. 97, 170201 (2006).
[32] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

(Oxford University Press, Oxford, 1989).
[33] W. Zheng, H. Liu, and N. Xu, Phys. Rev. E 94, 062608

(2016).
[34] S. R. Nagel, Rev. Mod. Phys. 89, 025002 (2017).
[35] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.

Zamponi, Nat. Commun. 5, 3725 (2014).
[36] P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F.

Zamponi, J. Stat. Mech.: Theory Exp. (2014) P10009.

033002-5

https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1038/nphys3845
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1103/PhysRevLett.110.086001
https://doi.org/10.1103/PhysRevLett.110.086001
https://doi.org/10.1103/PhysRevLett.110.086001
https://doi.org/10.1103/PhysRevLett.110.086001
https://doi.org/10.1103/PhysRevLett.116.085502
https://doi.org/10.1103/PhysRevLett.116.085502
https://doi.org/10.1103/PhysRevLett.116.085502
https://doi.org/10.1103/PhysRevLett.116.085502
https://doi.org/10.1140/epje/i2006-10024-2
https://doi.org/10.1140/epje/i2006-10024-2
https://doi.org/10.1140/epje/i2006-10024-2
https://doi.org/10.1140/epje/i2006-10024-2
https://doi.org/10.1103/PhysRevE.76.036104
https://doi.org/10.1103/PhysRevE.76.036104
https://doi.org/10.1103/PhysRevE.76.036104
https://doi.org/10.1103/PhysRevE.76.036104
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1103/RevModPhys.89.035005
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.109.105703
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.103.065501
https://doi.org/10.1103/PhysRevLett.106.156001
https://doi.org/10.1103/PhysRevLett.106.156001
https://doi.org/10.1103/PhysRevLett.106.156001
https://doi.org/10.1103/PhysRevLett.106.156001
https://doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1103/PhysRevE.82.055103
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1103/PhysRevE.92.062302
https://doi.org/10.1103/PhysRevE.92.062302
https://doi.org/10.1103/PhysRevE.92.062302
https://doi.org/10.1103/PhysRevE.92.062302
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevE.57.7192
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1103/PhysRevLett.108.135502
https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1103/PhysRevE.84.016115
https://doi.org/10.1103/PhysRevE.71.010501
https://doi.org/10.1103/PhysRevE.71.010501
https://doi.org/10.1103/PhysRevE.71.010501
https://doi.org/10.1103/PhysRevE.71.010501
https://doi.org/10.1103/PhysRevE.95.022611
https://doi.org/10.1103/PhysRevE.95.022611
https://doi.org/10.1103/PhysRevE.95.022611
https://doi.org/10.1103/PhysRevE.95.022611
https://doi.org/10.1103/PhysRevE.82.031301
https://doi.org/10.1103/PhysRevE.82.031301
https://doi.org/10.1103/PhysRevE.82.031301
https://doi.org/10.1103/PhysRevE.82.031301
https://doi.org/10.1103/PhysRevLett.117.045501
https://doi.org/10.1103/PhysRevLett.117.045501
https://doi.org/10.1103/PhysRevLett.117.045501
https://doi.org/10.1103/PhysRevLett.117.045501
https://doi.org/10.1103/PhysRevE.83.061101
https://doi.org/10.1103/PhysRevE.83.061101
https://doi.org/10.1103/PhysRevE.83.061101
https://doi.org/10.1103/PhysRevE.83.061101
https://doi.org/10.1103/PhysRevE.93.063003
https://doi.org/10.1103/PhysRevE.93.063003
https://doi.org/10.1103/PhysRevE.93.063003
https://doi.org/10.1103/PhysRevE.93.063003
https://doi.org/10.1103/PhysRevE.95.031001
https://doi.org/10.1103/PhysRevE.95.031001
https://doi.org/10.1103/PhysRevE.95.031001
https://doi.org/10.1103/PhysRevE.95.031001
https://doi.org/10.1103/PhysRevE.92.042135
https://doi.org/10.1103/PhysRevE.92.042135
https://doi.org/10.1103/PhysRevE.92.042135
https://doi.org/10.1103/PhysRevE.92.042135
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevE.94.062608
https://doi.org/10.1103/PhysRevE.94.062608
https://doi.org/10.1103/PhysRevE.94.062608
https://doi.org/10.1103/PhysRevE.94.062608
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1103/RevModPhys.89.025002
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1038/ncomms4725
https://doi.org/10.1088/1742-5468/2014/10/P10009
https://doi.org/10.1088/1742-5468/2014/10/P10009
https://doi.org/10.1088/1742-5468/2014/10/P10009



