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By introducing four fundamental types of disorders into a two-dimensional triangular lattice separately,
we determine the role of each type of disorder in the vibration of the resulting mass-spring networks.
We are concerned mainly with the origin of the boson peak and the connection between the boson peak
and the transverse Ioffe–Regel limit. For all types of disorders, we observe the emergence of the boson
peak and Ioffe–Regel limits. With increasing disorder, the boson peak frequency ωBP , transverse Ioffe–
Regel frequency ωT

IR, and longitudinal Ioffe–Regel frequency ωL
IR all decrease. We find that there are

two ways for the boson peak to form: developing from and coexisting with (but remaining independent
of) the transverse van Hove singularity without and with local coordination number fluctuation. In
the presence of a single type of disorder, ωT

IR ≥ ωBP , and ωT
IR ≈ ωBP only when the disorder is

sufficiently strong and causes spatial fluctuation of the local coordination number. Moreover, if there
is no positional disorder, ωT

IR ≈ ωL
IR. Therefore, the argument that the boson peak is equivalent to the

transverse Ioffe–Regel limit is not general. Our results suggest that both local coordination number
and positional disorder are necessary for the argument to hold, which is actually the case for most
disordered solids such as marginally jammed solids and structural glasses. We further combine two
types of disorders to cause disorder in both the local coordination number and lattice site position. The
density of vibrational states of the resulting networks resembles that of marginally jammed solids well.
However, the relation between the boson peak and the transverse Ioffe–Regel limit is still indefinite
and condition-dependent. Therefore, the interplay between different types of disorders is complicated,
and more in-depth studies are required to sort it out.
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1 Introduction

For normal solids such as crystals, the normal modes
of vibration are propagating plane waves, i.e., phonons
[1, 2]. Low-frequency phonons form a Debye-like den-
sity of states (DOS), D(ω) ∼ ωd−1, where d is the spa-
tial dimension, before reaching the van Hove singularities
(two kinks or sharp peaks in the intermediate- and high-
frequency regimes corresponding to the Brillouin zone).
When a disorder is introduced, the propagating feature of
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the modes is destroyed above a critical frequency called
the Ioffe–Regel frequency, ωIR. When ω ≈ ωIR, the
Ioffe–Regel limit is reached, and the wavelength of the
modes is comparable to the phonon mean free path, so
the modes at ω > ωIR lose their particulate nature [3].
Typically, ωIR decreases with increasing disorder, so it is
an important quantity for characterizing the vibrational
properties of disordered solids.

In addition to the Ioffe–Regel characteristics, the bo-
son peak is another important vibrational feature of typ-
ical disordered solids such as glasses [4–15]. When the
DOS is divided by the Debye scaling, the reduced DOS,
D(ω)/ωd−1, exhibits a low-frequency peak at ωBP , which
is much lower than the frequency at which the trans-
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verse van Hove singularity occurs, implying aggregation
of excess soft modes. This boson peak is thought to be
the key to understanding abnormal properties of disor-
dered solids, e.g., the glass transition and unusual low-
temperature thermal properties and energy transport in
glasses [16–18]. The origin of the boson peak, which has
been a topic of vigorous debate, seems to be system- or
model-dependent and has been related to a variety of
elements, e.g., the transverse Ioffe–Regel limit [19, 20],
locally favored structures [21], local vibration or coher-
ent motion of particle clusters [22, 23], the phonon-saddle
transition (in the energy landscape) [9, 10], extended soft
modes arising from marginal stability [18, 24, 25], spatial
fluctuation of elastic moduli [26–28], breakdown of the
continuum approximation on the mesoscopic length scale
[29, 30], topologically diverse defects of disordered solids
[31], and two-level systems [32]. Although no conclu-
sion has been reached regarding whether the boson peak
has a universal origin, it has been shown that the boson
peak is strongly coupled to the instability of disordered
solids [33, 34]. Therefore, clarifying the role of disorder
and its effect on the mechanical stability is essential to
understanding the boson peak.

To tackle this issue, a straightforward protocol is to
observe the evolution of the system with increasing dis-
order by starting with a perfect crystal. Previous stud-
ies have suggested that when force constant disorder
is introduced into a lattice, the boson peak evolves
from the transverse van Hove singularity of crystals
[26, 27, 35, 36]. In contrast, a recent study revealed an-
other scenario in which, as the particle size polydispersity
is continuously increased, the boson peak emerges at the
transition from crystals to disordered crystals, where the
structure is highly ordered, and the van Hove singularity
is still rather pronounced [37]. Therefore, evolution from
the van Hove singularity may be only a conditional path-
way to boson peak formation. The fundamental differ-
ence between the two approaches is the type of disorder
introduced. It is thus necessary to have a complete pic-
ture of how different types of disorder affect the vibration
of disordered solids, which is apparently lacking.

Compared with the physical meaning of the boson
peak frequency ωBP , that of the Ioffe–Regel frequency
ωIR is more definite. Some studies have demonstrated
a link between the boson peak and the transverse
Ioffe–Regel limit [19, 20]. However, it remains unsettled
whether this link can be generalized to all types of dis-
ordered systems and whether we can claim for sure that
the boson peak is equivalent to the transverse Ioffe–Regel
limit.

Bearing in mind the issues mentioned above, we study
the evolution of two-dimensional mass-spring networks
with four types of disorders: disorders in the force con-
stant, lattice site position, local coordination number,

and vacancies. These disorders should cover all possibil-
ities. To study them separately will give us a complete
and clear picture of the role of each type of disorder in
boson peak formation and the link between the boson
peak and the transverse Ioffe–Regel limit.

Starting with a perfect triangular lattice, we find that
the boson peak emerges and evolves with increasing dis-
order for all types of disorder. For force constant or lat-
tice site position disorder, which maintain a spatially uni-
form local coordination number (z = 6), the boson peak
seems to develop from the van Hove singularity. How-
ever, the transverse Ioffe–Regel frequency ωT

IR is always
lager than ωBP . For local coordination number or va-
cancy disorder, the boson peak coexists with residues of
the van Hove singularities. ωT

IR is greater than ωBP when
the disorder is weak and approaches ωBP only when the
disorder is sufficiently strong. Interestingly, as long as
the lattice site structure remains perfect, i.e., for force
constant or local coordination number disorder, the lon-
gitudinal Ioffe–Regel frequency ωL

IR is always equal to
ωT
IR.
We thus obtain several important findings and deduc-

tions: (i) the boson peak might evolve from the trans-
verse van Hove singularity only in the absence of local
coordination number fluctuation resulting from the re-
moval of springs or lattice sites, (ii) the transverse and
longitudinal Ioffe–Regel frequencies depart from each
other only in the presence of positional disorder caused
by displacing or removing lattice sites, and (iii) the boson
peak could be equivalent to the transverse Ioffe–Regel
limit only in the presence of both local coordination num-
ber fluctuation and positional disorder.

Many disordered solids do possess both local coordi-
nation number fluctuation and positional disorder. The
joint effects of multiple types of disorder may not be
the simple superposition of their individual effects. We
thus combine two different types of disorder and com-
pare the vibrational properties of the resulting networks
with those of marginally jammed solids.

A packing of particles interacting via contact repulsion
undergoes a jamming transition and becomes a jammed
solid when the packing fraction is above a critical value
ϕj [38–45]. Jammed solids are disordered in both par-
ticle position and local coordination number. One of
the most remarkable features of the jamming transition
is its isostaticity; i.e., the average coordination number
per particle z is equal to zc = 2d, which is the minimum
requirement for mechanical stability. The vibrational
properties of jammed solids are found to be determined
by the excess coordination number δz = z−zc, especially
the formation of a low-frequency plateau in the DOS
whose onset frequency is determined by δz [24, 46, 47].

By randomly removing springs or lattice sites, we ob-
tain an average coordination number comparable to that
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of the reference jammed solids. When lattice site posi-
tion disorder is also present, the resulting networks show
a DOS similar to that of jammed solids in the entire
spectrum, which no single type of disorder can achieve.
Our results indicate that local coordination number fluc-
tuation and the resulting small δz play the key role in
the low-frequency flattening of the DOS, whereas posi-
tional disorder results in elimination of the residue of the
transverse van Hove singularity. However, when disor-
ders are randomly introduced, the relation between the
boson peak and the transverse Ioffe–Regel limit seems
quite conditional. Therefore, it is useful to study the
effects of a single type of disorder, but more in-depth
studies are necessary to understand the complicated in-
terplay among different types of disorder.

2 Methods

We start with a perfect two-dimensional triangular lat-
tice with N sites and a lattice constant a, and introduce
into the system different types of disorder, as defined be-
low. The aspect ratio of the system is Lx : Ly = 2 :

√
3.

Periodic boundary conditions are applied in both direc-
tions. A mass m sits at a lattice site and is connected to
its nearest neighbors by a harmonic spring. The inter-
action potential between site i and its nearest neighbor
j is

Uij =
1

2
kij(rij − r0ij)

2, (1)

where kij is the force constant; rij is the separation be-
tween i and j, i.e., the length of the spring connecting
them; and r0ij is the length of the relaxed spring. For
the perfect lattice, r0ij = a, and kij = k0. Here, we show
mainly the results for N = 4096 systems. The length,
energy, and mass are in units of a, k0a2, and m, respec-
tively. The frequency is in units of

√
k0/m.

We can break the perfection of the lattice and intro-
duce disorder in multiple ways. Figure 1 shows four
types of fundamental disorder elements that one can
imagine: (a) force constant, kij ; (b) lattice site position
ui = ri−rpi , where ri and rpi are the locations of site i for
distorted and perfect lattices, respectively; (c) local co-
ordination number [where bonds (springs) are randomly
cut]; and (d) vacancy [where sites (masses) are randomly
removed]. The types of disorder in (a) and (b) maintain
a spatially uniform local coordination number where all
sites are always connected by six springs, whereas in (c)
and (d), the local coordination number fluctuates. In this
work, we specifically define local coordination number
disorder as the disorder in (c). The disorder in (d) can
be treated as a special case of (c) and is called vacancy
disorder to distinguish it from the specified local coor-
dination number disorder. The types of disorder in (a)

Fig. 1 Illustrations of mass-spring networks with a single
type of disorder. Solid circles are lattice sites (masses), and
lines are springs connecting neighboring lattices. (a) Force
constant disorder, where the thickness of the lines is propor-
tional to the force constant. (b) Lattice site position disor-
der, where the locations of sites are randomly moved. (c)
Local coordination number disorder, where springs are ran-
domly removed. (d) Vacancy disorder, where lattice sites are
randomly removed.

and (c) maintain perfect lattice site structure, whereas
in (b) and (d), positional order is destroyed by site dis-
placements or vacancies.

There is another type of disorder that is not considered
here: mass disorder. This type of disorder should affect
the properties of normal modes, especially in the pres-
ence of extremely heavy or pinned particles [48]. How-
ever, in real systems, particle masses do not vary greatly,
and in most model systems, particles are treated as hav-
ing equal mass. Our preliminary results indicate that
the vibrational properties of mass-spring networks are
not very sensitive to mass disorder. Therefore, in this
work, we concentrate only on the effects of positional
and topological disorder.

The networks studied here are unstressed. Namely, all
the springs are relaxed, so r0ij = a for types (a), (c), and
(d), whereas it fluctuates for type (b). We obtain all the
normal modes of vibration by diagonalizing the Hessian
matrix using ARPACK [49]. The DOS is calculated from
D(ω) = ⟨

∑
n δ(ω−ωn)⟩/dN , where ωn is the frequency of

the nth normal mode of vibration, ⟨·⟩ denotes the average
over tens of independent configurations, and the sum is
over all modes. We ensure that the networks considered
here are stable by verifying that there are no negative
eigenvalues of the Hessian matrix.

To obtain the Ioffe–Regel frequencies, we calculate the
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dynamical structure factors [19, 50]

Sλ(q, ω) =
q2

mω2

∑
n

Fn,λδ(ω − ωn), (2)

where the sum is over all modes and λ denotes T (trans-
verse) or L (longitudinal). Further,

Fn,L =
∣∣∣∑

j

(en,j · q̂) exp(iq · rj)
∣∣∣2, (3)

Fn,T =
∣∣∣∑

j

(en,j × q̂) exp(iq · rj)
∣∣∣2, (4)

where the sums are over all sites, en,j is the polarization
vector of site j in mode n, and q̂ = q/q, with q being the
wave vector satisfying the periodic boundary conditions,
and q = |q|.

3 Results

In this section, we first show results for only a single type
of disorder, from which we expect to extract some rules.
Then we will show results for combinations of two types
of disorder and compare them with jammed packings of
frictionless disks. This decomposition–combination pro-
cedure enables us to sort out the role of different types
of disorder in determining the vibrational properties of
marginally jammed solids.

3.1 Force constant disorder

As shown in Fig. 1(a), force constant disorder is real-
ized by letting the force constant of the springs vary
while maintaining perfect lattice structure. We assign
the spring connecting sites i and j a force constant
kij = k0(1 + ηkξij), where ξij is a random number uni-
formly distributed in [−0.5, 0.5], and ηk ∈ [0, 2] sets the
strength of the disorder.

Figure 2(a) shows the evolution of the reduced DOS,
D(ω)/ω, with ηk. With increasing ηk, both the trans-
verse and longitudinal van Hove singularities evolve to
a broad peak. Further, the transverse van Hove singu-
larity moves to lower frequencies and becomes the low-
frequency boson peak. The height of the peak decreases
initially and increases after approximately ηk > 1.6. For
this case, it is natural to deduce that the boson peak
develops from the transverse van Hove singularity, as
proposed in Refs. [26, 27, 35, 36].

In Figs. 2(b) and (c), we plot examples of the trans-
verse and longitudinal dynamical structure factors us-
ing Eqs. (2)–(4). All the curves can be fitted well with

Fig. 2 Vibrational properties of networks with force con-
stant disorder ηk. (a) Evolution of the reduced DOS, D(ω)/ω,
with ηk. (b, c) Examples of the transverse and longitudi-
nal dynamical structure factors (divided by 2N), ST (ω) and
SL(ω), respectively, at various q for networks with ηk = 1.92.
Lines are fits using Eq. (5). (d) Dispersion relation Ωλ(q) and
excitation broadening πΓ (q) for ηk = 1.92. Solid and dashed
lines have slopes of 1 and 2, respectively. (e) Comparison of
the boson peak frequency ωBP and transverse and longitu-
dinal Ioffe–Regel frequencies, ωT

IR and ωL
IR, respectively, in

terms of ηk.

[50, 51]

Sλ(q, ω) = Sλ,B(q, ω) + Sλ,R(q, ω)

=
Aλ(q)

[ω2 −Ω2
λ(q)]

2 + ω2Γ 2
λ(q)

+
Bλ(q)

ω2 + (Dλq2)2
,

(5)

where Sλ,B(q, ω) and Sλ,R(q, ω) are the Brillouin
and Rayleigh components, respectively; Aλ(q, ω) and
Bλ(q, ω) are fitting parameters; Ωλ(q) gives the disper-
sion relation; Γλ(q) characterizes the excitation broad-
ening; and Dλ is the thermal diffusivity. Figure 2(d)
shows that the dispersion relations for both transverse
and longitudinal excitation are linear: Ωλ = cλq, where
cλ is the speed of sound, and Γλ ∼ q2. The intersection
between Ωλ(q) and πΓλ(q) at q = qIR determines the
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Ioffe–Regel frequencies [19]

ωλ
IR = Ωλ(qIR) = πΓλ(qIR). (6)

In Fig. 2(e), we compare three characteristic frequen-
cies, ωBP read from Fig. 2(a), ωT

IR, and ωL
IR. In the en-

tire range of ηk studied here, all the frequencies decrease
with increasing ηk, and ωT

IR ≈ ωL
IR > ωBP . Therefore,

in the presence of only force constant disorder, ωT
IR and

ωL
IR couple to each other, and the gap between ωT

IR and
ωBP shows no tendency to vanish.

3.2 Lattice site position disorder

As shown in Fig. 1(b), we introduce lattice site posi-
tion disorder by randomly displacing site i from rpi to
ri = rpi + ui, where ui = ηuχi[cos(θi)x̂+ sin(θi)ŷ], with
χi ∈ [−0.5, 0.5] and θi ∈ [−π/2, π/2] being uniformly dis-
tributed random numbers, and ηu setting the strength
of the disorder. To avoid frequent cross-linking of the
springs, we allow ηu only in the range from 0 to 1. The
resulting networks have structural disorder but maintain
a spatially uniform local coordination number, z = 6.

Figure 3(a) demonstrates that the evolution of D(ω)/ω
with ηu is similar to that for force constant disorder. The
transverse van Hove singularity moves to lower frequen-
cies with increasing ηu, and its height reaches the mini-
mum when ηu ≈ 0.6. Therefore, for this case, the boson
peak also seems to develop from the transverse van Hove
singularity.

Figures 3(b) and (c) show that both the transverse
and longitudinal dynamical structure factors can be fit-
ted well with Eq. (5), from which we extract Ωλ(q) and
Γλ and determine the Ioffe–Regel frequency ωλ

IR from
Eq. (6) [see examples in Fig. 3(d)].

The boson peak frequency and two Ioffe–Regel fre-
quencies decrease with increasing ηu. As has been seen
for force constant disorder, ωBP is also smaller than ωT

IR,
and they do not tend to approach each other. However,
in contrast to the case of force constant disorder, ωT

IR

is not equal to ωL
IR. Bizarrely, unlike the normal obser-

vation of ωL
IR > ωT

IR in disordered solids [19, 20, 50],
ωL
IR < ωT

IR here. This unusual behavior may result in
extraordinary properties of this type of disordered net-
work, which will be discussed elsewhere [52].

3.3 Local coordination number disorder

Local coordination number disorder is introduced by ran-
domly removing ηbN springs, as illustrated in Fig. 1(c).
The resulting networks have an average coordination
number of z = 6 − 2ηb and maintain perfect positional
order. To maintain mechanical stability, we do not al-
low z < 4 or any site to attach to less than three springs.
Therefore, ηb has values in [0, 1].

Figure 4(a) indicates that, unlike the case for force

Fig. 3 Vibrational properties of networks with lattice site
position disorder ηu. (a) Evolution of the reduced DOS,
D(ω)/ω, with ηu. (b, c) Examples of the transverse and
longitudinal dynamical structure factors (divided by 2N),
ST (ω) and SL(ω), respectively, at various q for networks with
ηu = 0.9. Lines are fits using Eq. (5). (d) Dispersion rela-
tion Ωλ(q) and excitation broadening πΓ (q) for ηu = 0.9.
Solid and dashed lines have slopes of 1 and 2, respectively.
(e) Comparison of the boson peak frequency ωBP and trans-
verse and longitudinal Ioffe–Regel frequencies, ωT

IR and ωL
IR,

respectively, in terms of ηu.

constant and lattice site position disorder, the boson
peak does not develop from the transverse van Hove sin-
gularity. With increasing ηb, a low-frequency boson peak
emerges, grows, and moves to lower frequencies in the
presence of two other peaks. These two peaks appar-
ently develop from the van Hove singularities and always
stay at roughly the same frequencies. It has been shown
that the emergence of the boson peak in this case is a
signature of the transition from crystals to disordered
crystals, i.e., solids with fairly high crystalline order but
sufficiently strong local coordination number fluctuation
and the mechanical and vibrational properties of disor-
dered solids [37].

Figure 4(e) shows that the ωT
IR and ωL

IR values ob-
tained from Figs. 4(b)–(d) are always equal. With in-
creasing ηb, the Ioffe–Regel frequencies decrease and ap-
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Fig. 4 Vibrational properties of networks with local co-
ordination number disorder ηb. (a) Evolution of the reduced
DOS, D(ω)/ω, with ηb. (b, c) Examples of the transverse and
longitudinal dynamical structure factors (divided by 2N),
ST (ω) and SL(ω), respectively, at various q for networks with
ηb = 0.45. Lines are fits using Eq. (5). (d) Dispersion rela-
tion Ωλ(q) and excitation broadening πΓ (q) for ηb = 0.45.
Solid and dashed lines have slopes of 1 and 2, respectively.
(e) Comparison of the boson peak frequency ωBP and trans-
verse and longitudinal Ioffe–Regel frequencies, ωT

IR and ωL
IR,

respectively, in terms of ηb.

proach ωBP . All three frequencies agree at sufficiently
large ηb.

3.4 Vacancy disorder

In this case, we randomly remove ηvN sites and the
springs attached to them to realize disorder induced by
vacancies, as shown in Fig. 1(d). To avoid aggregation of
vacancies, we deliberately prohibit simultaneous removal
of two neighboring sites. The resulting networks devi-
ate from perfect lattice structure owing to the presence
of vacancies and have the average coordination number
z = 6(1 − 2ηv)/(1 − ηv). To guarantee mechanical sta-
bility, ηv ranges from 0 to 0.25. As mentioned above,
this type of disorder also leads to spatial fluctuation of

the local coordination number, which is actually a spe-
cial case of local coordination number disorder, and its
effects on the vibrational properties may be similar to
those of random removal of springs as discussed in Sec-
tion 3.3. It destroys the perfect lattice structure, but
in a different way from the lattice site position disorder
discussed in Section 3.2.

As expected, the evolution of D(ω)/ω with ηv shown
in Fig. 5(a) looks quite similar to that in Fig. 4(a). The
boson peak apparently does not develop from the trans-
verse van Hove singularity, because it coexists with the
peaks corresponding to the van Hove singularities.

As shown in Fig. 5(d), ΩT (q) and ΩL(q) extracted
from Figs. 5(b) and (c) are still linear. πΓT (q) scales
roughly with q2 and intersects ΩT (q) at ωT

IR, except that
it decays faster with decreasing q when q is small, imply-

Fig. 5 Vibrational properties of networks with vacancy dis-
order ηv. (a) Evolution of the reduced DOS, D(ω)/ω, with
ηv. (b, c) Examples of the transverse and longitudinal dy-
namical structure factors (divided by 2N), ST (ω) and SL(ω),
respectively, at various q for networks with ηv = 0.12. Lines
are fits using Eq. (5). (d) Dispersion relation Ωλ(q) and ex-
citation broadening πΓ (q) for ηv = 0.12. Solid and dashed
lines have slopes of 1 and 2, respectively. (e) Comparison of
the boson peak frequency ωBP and transverse Ioffe–Regel fre-
quency ωT

IR in terms of ηk. In the range of ηv shown here, the
longitudinal Ioffe–Regel frequency ωL

IR is not well-defined.
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ing that vacancy disorder does not cause strong scatter-
ing of long-wavelength phonons. Vacancy disorder differs
from the other three types of disorder in that there is no
well-defined scaling for ΓL(q) and ΩL(q) > πΓL(q) over
the entire spectral range, even though ωT

IR already exists.
Therefore, ωL

IR, if it exists, would exceed the maximum
frequency of all modes, which is not meaningful. Only
when ηv is sufficiently large do we see the intersection
between ΩL(q) and πΓL(q) and estimate ωL

IR, which is
larger than ωT

IR.
In Fig. 5(e), we compare only ωBP with ωT

IR, because
the longitudinal excitations do not exhibit an Ioffe–Regel
limit in the ηv range shown here. Both frequencies de-
crease with increasing ηv. ωT

IR is larger than ωBP when
ηv is small and is equal to ωBP at large ηv. For this
case, we may argue that the boson peak corresponds to
the transverse Ioffe–Regel limit when the disorder is suf-
ficiently strong.

3.5 Rules summarized from cases of a single type of
disorder

As discussed in the Methods section, the networks with
different types of disorder share some common structural
or topological features. Networks with disorder in the
force constant or lattice site position maintain a spatially
uniform local coordination number (z = 6), whereas z
fluctuates when springs or sites are randomly removed.
The lattice site structure remains perfect with disorder in
the force constant or local coordination number, whereas
positional order is destroyed in the presence of disorder
in the lattice site position or vacancies, but in different
ways. By considering the structural, topological, and
vibrational properties of disordered networks with four
types of disorder, we can summarize some rules and en-
hance our understanding of the origin of the boson peak
and its relation to the transverse Ioffe–Regel limit.

First, all types of disorder cause the emergence of the
boson peak and Ioffe–Regel limits. With increasing dis-
order strength, the boson peak and Ioffe–Regel frequen-
cies all decrease.

Our study reveals two possible mechanisms for forma-
tion of the boson peak. If there is no local coordination
number fluctuation, the boson peak develops from the
transverse van Hove singularity, regardless of whether
the lattice structure is ordered. In contrast, local coordi-
nation number fluctuation leads to the coexistence of the
boson peak and residues of the van Hove singularities.

Regarding the relationship between the boson peak
and the transverse Ioffe–Regel limit, our results ques-
tion the generality of the argument that they are equiv-
alent. We would argue that they match only under cer-
tain circumstances. ωBP ≈ ωT

IR only when a sufficiently
large number of springs or lattice sites are randomly
removed, and the boson peak does not simply develop

from the transverse van Hove singularity. Otherwise,
ωT
IR > ωBP . Even though ωBP ≈ ωT

IR could be true, the
transverse nature of the boson peak is questionable when
ωL
IR ≈ ωT

IR, which seems to be true as long as there is no
positional disorder. In the presence of a single type of
disorder, vacancy disorder is the only one showing that
the boson peak might agree with the transverse Ioffe–
Regel limit.

Note that even though the presence of positional dis-
order leads to separation of ωT

IR and ωL
IR, there are two

different consequences: ωL
IR < ωT

IR for lattice site po-
sition disorder, whereas ωL

IR > ωT
IR for vacancy disor-

der. Therefore, although ωT
IR and ωL

IR could separate,
vacancy disorder, but not lattice site position disorder,
seems to be a good choice for boosting the agreement
between the boson peak and the transverse Ioffe–Regel
limit.

3.6 Combination of two types of disorder and
comparison to jammed solids

Most typical disordered solids, e.g., marginally jammed
solids and structural glasses, contain multiple types of
disorder. Although the results presented above help clar-
ify our picture of how a single type of disorder affects
the vibration of networks, the effects of competition or
cooperation among different types of disorder on the vi-
brational properties of disordered solids remain elusive.
In this section, we show results for networks with two
different types of disorder and see how their joint effects
agree with or deviate from the expectations based on our
observations of a single type of disorder.

Here, we consider only combinations of lattice site
position, local coordination number, and vacancy dis-
order, in order to compare the resulting networks with
marginally jammed solids with harmonic repulsion. To
obtain jammed solids, we can simply replace lattice site
i of the networks studied above with a particle of mass
m and diameter σi. Particles i and j interact via the
potential

Uij =
k0
2
(σij − rij)

2Θ

(
1− rij

σij

)
, (7)

where σij is the sum of their radii, and Θ(x) is the Heav-
iside step function. The force constant of the pair inter-
action is constant, so we do not need to include force con-
stant disorder in this section. We study a polydisperse
system with σi = σ(1+ηχi), where χi is a random num-
ber uniformly distributed in [−0.5, 0.5], and η ∈ [0, 2] sets
the particle size polydispersity. We use the fast inertial
relaxation engine algorithm [53] to minimize the total
potential energy of the system, U =

∑
ij Uij , and obtain

mechanically stable jammed states, where the sum is over
all pairs of particles. The units of mass, length, and en-
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ergy are m, σ, and k0σ
2, respectively, so the frequency

is in units of
√
k0/m. Here, we show the results for two-

dimensional N = 4096 jammed solids with η = 0.4 at a
pressure p = 8.8×10−3, which have an average coordina-
tion number z ≈ 4.5. Note that we study disordered net-
works in which all springs are relaxed. We thus replace
the particle interactions of jammed solids with relaxed
springs by setting the first derivative of the potential
energy to zero while maintaining its second derivative.
These jammed solids are thus unstressed, and their pres-
sure is reset to zero. The unstressed solids are more
stable because the existence of pressure destabilizes the
system [17].

It has been proposed that the low-frequency vibra-
tion of marginally jammed solids is determined by the
excess average coordination number above isostaticity,
δz = z − zc [18, 24]. We thus generate disordered net-
works with δz = 0.5, that of jammed solids, by introduc-
ing local coordination number or vacancy disorder. We
are concerned about three combinations: (I) local coordi-
nation number and lattice site position disorder, (II) va-
cancy and lattice site position disorder, and (III) local co-
ordination number and vacancy disorder. Jammed solids
are disordered in both local coordination number and
particle position. Therefore, types (I) and (II) should in-
duce networks with structure and topology more closely
resembling those of jammed solids than type (III), be-
cause the remaining lattice sites for type (III) are still
on the sites of a perfect triangular lattice.

In Fig. 6(a), we compare the DOSs of different net-
works with jammed solids. Let us first compare networks
with only local coordination number or vacancy disorder
(ηb = 0.75 or ηv = 0.2) and the combination of the two
(ηb = 0.45 and ηv = 0.08), all with δz = 0.5, the value
for jammed solids. Because of isostaticity, there exists
a low-frequency plateau in the DOS of jammed solids,
whose onset frequency has been shown to be ω∗ ∼ δz for
harmonic repulsion [24, 46, 47]. The boson peak iden-
tified from D(ω)/ω normally occurs at ωBP < ω∗, on
the ramp of D(ω) before the plateau. ωBP , like ω∗, is
also proportional to δz. Therefore, ω∗ is usually treated
like ωBP , especially for unstressed jammed solids, in
which the low-frequency DOS is steeply ramped and thus
ωBP ≈ ω∗. Interestingly, all three D(ω) curves exhibit a
low-frequency plateau, and their low-frequency region al-
most overlaps that of jammed solids. Figure 6(b) shows
that the three networks have a boson peak frequency sim-
ilar to that of jammed solids (compare the ωBP values
at δz = 0.5), and ωBP ∼ δz is roughly true for different
values of ηb and ηv. Therefore, our observations support
the argument that the low-frequency vibration of sys-
tems with contact repulsion (marginally stable solids) is
determined by the excess average coordination number
above isostaticity. Consequently, the boson peak does

not simply develop from the transverse van Hove singu-
larity.

Although the low-frequency region of the DOS al-
ready looks similar to that of jammed solids, as discussed
above, the masses of the three types of networks are still
located at the original sites of the perfect triangular lat-
tice. This leads to residues of the van Hove singulari-

Fig. 6 (a) Density of states D(ω) for disordered networks
and unstressed jammed solids, all with an excess average
coordination number δz = 0.5. The values of the disor-
der strength are shown in parentheses in the legend. (b)
Boson peak frequency ωBP versus δz for different systems.
Line shows ωBP ∼ δz. (c, d) Lattice site position disor-
der (ηu) dependence of characteristic frequencies of networks
with δz = 0.5 induced by local coordination number disorder
and vacancy disorder, respectively.
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ties, manifested as two peaks in the intermediate- and
high-frequency regimes, which deviate from the DOS of
jammed solids. Because the transverse van Hove singu-
larity moves to lower frequencies and develops into the
boson peak with increasing ηu, we thus superimpose lat-
tice site position disorder on local coordination number
or vacancy disorder. With increasing ηu, the residue of
the transverse van Hove singularity indeed decays and
eventually disappears. As shown in Fig. 6(a), for a suf-
ficiently large ηu, e.g., ηu = 0.7 here, the DOSs of the
resulting networks are more like that of jammed solids
in the entire spectrum.

Our study here thus reveals that local coordination
number or vacancy disorder and lattice site position dis-
order are important in determining the vibrational prop-
erties of jammed solids in the low- and intermediate-
to-high-frequency regimes, respectively. Because all the
types of disorder considered in this work induce the bo-
son peak, it is expected that the superposition of two
types of disorder may quantitatively affect the boson
peak frequency. As shown in Fig. 6(a), the addition of
ηu = 0.7 extends the plateau in D(ω) to slightly lower
frequencies, so the combination of two types of disorder
leads to a lower boson peak frequency than those of any
single type of disorder.

For the jammed solids studied here, ωBP is slightly
higher than ωT

IR, which we may treat as equal. However,
ωL
IR is apparently higher than ωBP . Therefore, we may

claim that the boson peak corresponds to the transverse
Ioffe–Regel limit. In Figs. 6(c) and (d), we compare ωBP ,
ωT
IR, and ωL

IR for disordered networks with increasing ηu
at a constant δz = 0.5. All the frequencies decrease
with increasing ηu, as expected. At ηu = 0.7, however,
when D(ω) looks similar to that of jammed solids, all
three frequencies are still roughly the same, unlike the
case for jammed solids. By randomly introducing two
types of disorder, we still cannot reproduce the equiva-
lence between the boson peak and the transverse Ioffe–
Regel limit. However, the combination of lattice site
position and vacancy disorder may provide some clues.
As discussed above, both types of disorder lead to the
departure of ωL

IR from ωT
IR, but vacancy disorder pushes

ωL
IR to much higher frequencies. The local coordination

number fluctuation induced by vacancy disorder might
be important in jammed solids, so more work is required
to define and identify its effects.

4 Discussion and conclusions

In this paper, we study the role of different types of
disorder in determining the vibrational properties of dis-
ordered systems. By separately introducing four types of

disorder to a two-dimensional triangular lattice, we ob-
tain findings that enhance our understanding of the ori-
gin of the boson peak and the relationship between the
boson peak and the transverse Ioffe–Regel limit. The bo-
son peak either develops from or coexists with the trans-
verse van Hove singularity, depending on whether the lo-
cal coordination number is spatially uniform. The boson
peak frequency is equal to the transverse Ioffe–Regel fre-
quency only when a sufficiently large number of springs
or lattice sites are randomly removed. The equivalence
between the boson peak and the transverse Ioffe–Regel
frequency suggested in the literature is thus question-
able, which is further questioned by the fact that the
transverse and longitudinal Ioffe–Regel frequencies are
equal, except in the presence of vacancy disorder.

By combining two types of disorder, we obtain a DOS
similar to that of jammed solids with the same ex-
cess average coordination number. We thus conclude
that the local coordination number fluctuation caused by
randomly removing springs or lattice sites is important
to determine the low-frequency vibration of marginally
jammed solids, whereas lattice site position disorder af-
fects mainly the intermediate- and high-frequency vibra-
tion by eliminating the transverse van Hove singularity.
The combination of two types of disorder leads to a de-
crease in the characteristic frequencies. However, ran-
dom superposition of two types of disorder does not al-
ways produce disordered networks exhibiting equivalence
between the boson peak and the transverse Ioffe–Regel
limit.

The decomposition–combination process applied in
this work helps us to sort out the role of different types of
disorder and recover some unusual vibrational properties
of marginally jammed solids. However, we still see dis-
crepancies between the resulting networks and jammed
solids. Note that in this work, we introduce disorders
in a random way, as long as the networks are stable.
The discrepancies imply that this random way does not
capture all of the structural or topological features of
jammed solids. To produce networks with vibrational
properties more similar to those of jammed solids, we
may need to introduce types of disorder selectively. To
achieve this goal, we can in turn attempt to decompose
different types of disorder in jammed solids. Then, some
highly useful techniques, such as machine learning [54],
may play an important role.
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